


72°C (1 min) and a final incubation at 72°C (10 min). Knockout mice produced
a 895-bp band when separated electrophoretically on a 1% (wt/vol) agarose
gel. Presence of the wild-type H19 gene was tested using similar reaction
conditions but a different reverse primer (5�-TTCAGTCACTTCCCTCAGCCTC-
3�) and increasing the annealing temperatures by 10°C throughout to produce
a 494-bp band.





glucose tolerance generally deteriorates as pregnancy
progresses (20), data relating to the very last weeks of
pregnancy corresponding to day 18 in the mouse are less
certain. Women with preexisting type 1 diabetes have a fall
in insulin requirements in the last 2 weeks of pregnancy
(21), suggesting a possible improvement in insulin sensi-
tivity. If effects on maternal glucose metabolism in our
mice were mediated by placental hormones (5), the gen-
eralized fall in maternal glucose concentrations at the end
of pregnancy may therefore have resulted from a prepar-
tum decrease in placental metabolic activity similar to that
which has been observed in other model systems (22).

H19�13 disruption affects Igf2 imprinting and expres-
sion, and fetal growth in mice (10,11). We hypothesize that
our results therefore relate to increased placental and fetal
Igf2 expression. However we cannot rule out a role for the
disruption of H19 per se or changes in 91H (antisense
H19) RNA expression (23). We propose that the increased
placental Igf2 expression, rather than causing changes in
maternal Igf-ii concentrations that were not detectably
raised in our mice, affects the expression and release of
metabolically active placental hormones into the maternal
circulation that worsens their glucose tolerance (5). Indi-
rect support for this comes from the enhanced lowering of
glucose concentrations we observed in H19�13�/� mice
between days 16 and 18 of pregnancy, as at equivalent
stages in human pregnancies at least, placental protein
concentrations in the maternal circulation fall (24). One
candidate hormone for this process is mouse placental
lactogen II because its placental expression has been
linked to that of Igf2 (25), it regulates pancreatic 	-cell
expansion in pregnancy (26), and pregnant mice without
functional prolactin receptors, for which it is a ligand,
become glucose intolerant (19). These animal experimen-
tal data may be important in the understanding of the
pathogenesis of human GDM. Previously, we found that in
humans a common H19 polymorphism is associated with
variation in birth weight, maternal glucose concentrations,
and cord blood IGF-II concentrations (9). In humans, there
is a linear relationship between maternal glucose toler-
ance during pregnancy and birth weights, even in the
absence of GDM (27). Our study would suggest that this
may not be explained solely by maternal genetic and
environmental factors determining glucose concentrations
crossing the placenta and stimulating fetal insulin secre-
tion with ensuing fetal weight gain. These relationships

could be affected by the fetal genome influencing maternal
glucose concentrations by factors secreted by the placenta
into the maternal circulation. In conclusion, this study
provides the first direct evidence that a variation in a fetal
gene affecting growth rates (10,11) may also alter maternal
glucose concentrations during pregnancy, in association
with increasing pregnancy-related insulin resistance, rais-
ing the possibility that this process could contribute to the
etiology of human GDM.
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