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1 (Dnmt1), which then copies DNA methylation marks from

the parental strand onto the newly synthesized daughter

strand [4]; the extent to which other epigenetic marks are

mitotically heritable is under investigation.

Transitions in cell fate and restoration of developmental

potency are closely associated with some form of epigenetic

reprogramming. Indeed, in the germline, there are two

genome-wide DNA demethylation events coincident with

major developmental milestones (figure 1): (i) immediately fol-

lowing fertilization in the zygote, and (ii) during the

establishment of the primordial germ cells (PGCs), which are

the direct progenitors of sperm and oocytes. It is thought that

these dramatic changes in epigenetic status allow the zygote to

erase the epigenetic signature inherited from the gametes (with

the notable exception of parental imprints) and thereby regain

developmental totipotency.Likewise, epigenetic reprogramming

ofPGCs is associatedwith restorationof developmental potential

and the erasure of parentalr



replaced by unmodified cytosine through various routes

potentially, including DNA replication, deamination and

BER [6]. Research using new mouse models targeting these

putative demethylation pathways has provided evidence for

their involvement in germline reprogramming [7–9]. In

addition, cell-culture paradigms representing different

stages of the germline have recently been developed, and

study of how these models—which vary in their develop-

mental potency—may be interconverted has proved fruitful

in uncovering the significance of DNA methylation repro-

gramming. Here, we review novel insights into how DNA

methylation is reprogrammed in the mouse germline and

speculate on its purpose.
2. DNA methylation reprogramming in
primordial germ cells

PGCs first arise around E7.25 in the epiblast of the develop-

ing embryo [10] and, at these early stages, seem to inherit

the epigenetic traits that are present in the cells of the epiblast

at this time, including significant levels of global DNA

methylation [11,12]. As a consequence, PGCs need to repro-

gramme this inherited somatic epigenetic pattern into that

of germ cells that have the epigenetic potential to give rise

to the gametes, with the capacity to form the totipotent

zygote in the next generation (figure 1). Epigenetic repro-

gramming in PGCs is a dramatic undertaking that leads to

the resetting of most DNA methylation marks—exceptions
include the most active retrotransposons, those with muta-

genic potential, such as intracisternal A particles (IAPs),

that resist the global wave of demethylation [13–15].

Sequences that resist reprogramming may potentially act as

carriers of epigenetic information across generations, leading

to transgenerational epigenetic inheritance. Epigenetic repro-

gramming in PGCs also entails remodelling of the chromatin

structure, potentially vast changes in the transcriptional land-

scape and the resetting of imprint DNA methylation marks

[11,13,16,17]. The latter have been the subject of intensive

studies since the discovery, almost 20 years ago, that the

maternal and paternal copy of some genes are differentially

marked by DNA methylation, leading to parent-of-origin-

specific expression [18]. We now know that these imprinted

genes play important roles in regulating growth in embryonic

and postnatal development, as well as behaviour [19]. It is



mouse blastocysts [24–27]. These EG cells appear to be even

more potent in their reprogramming potential than ES cells—

in somatic cell reprogramming, only EG cells can erase

imprints from their somatic fusion partners [28,29]. Intrigu-

ingly, the re-gained pluripotent state in PGCs is only

transient as the pluripotency network becomes transcription-

ally downregulated thereafter both in male and in female

PGCs by E16.5 (S. Seisenberger et al. 2012, unpublished

data). It is unclear at this point what the mechanistic function

of the activity of the pluripotency network in PGCs might be,

and why this activation is only transient.

Investigations into the mechanisms of global DNA

methylation erasure in PGCs have largely focused on the



genome. Interestingly, the endpoint of global methylation

re-establishment seems to be different for male and female

germ cells: sperm is heavily methylated with approximately

85 per cent global CG methylation levels, while oocytes

are moderately methylated with global methylation levels

around 30 per cent [7,52,60].
3. DNA methylation reprogramming in
the zygote

TheDNAmethylation patterns established in spermand oocyte

are reprogrammed oncemorewhen the two halves of the germ-

line are reunited in the zygote after fertilization (figure 1). The

genomes contributed byeachparent—independently packaged

in separate pronuclei—follow highly distinct paths involving

extensive epigenetic remodelling; DNA methylation dynamics

is conspicuous in its asymmetry between these pronuclei. The

paternal genome is stripped of much of its methylation in a

global and active process that appears to occur in two

stages—before and coincident with DNA replication—and is

complete before the first cell division [61,62]. The maternal

genome escapes such comprehensive 5mC loss in the zygote,

and is instead passively demethylated over subsequent clea-

vage divisions owing to the exclusion of the maintenance

DNA methyltransferase, DNMT1, from the nucleus [63].

Immunofluorescence with antibodies against 5mC estab-

lished loss of paternal methylation on a global level [61,64,65];

subsequent bisulphite analysis has shown removal of 5mC



Despite exposure to an identical ooplasm, the maternal

genome and the paternal sequences described earlier escape

active demethylation (figure 1). Intriguingly, the maternal

factor Stella (Dppa3 or PGC7) is required for this protection;

deletion from the zygote results in demethylation of the

maternal genome and paternally imprinted sequences, pre-

venting normal preimplantation development [83,84]. While

Stella protein is present in both zygotic pronuclei, its binding

is mediated by the H3K9 dimethylation modification—which

marks only maternal chromatin and certain paternal imprints

to specifically safeguard these regions [85,86]. Mechanisti-

cally, this protection is achieved by abrogation of known

demethylation pathways: Stella inhibits binding of TET3 to

chromatin to prevent oxidation of 5mC [86], as well as sup-

pressing BER component activation in the maternal

pronucleus [41]. The interaction of Stella with the BER path-

way, as well as other zygotic demethylation machinery such

as the elongator complex, requires further analysis; such

investigations will also shed light on whether additional

factors cooperate with Stella or act independently to shield

methylation from processing in the zygote.
4. Post-zygotic DNA methylation and
developmental potency

During early cell division in a mammalian embryo, daughter

cells derived from the zygote inherit a reprogrammed genome

with low methylation and are epigenetically largely indistin-

guishable from each other. The first event that differentiates

cells in the embryo occurs at the morula stage; those with a

peripheral location are largely destined to become the extra-

embryonic tissue, while centrally located cells will form the

embryo proper [87]. By the blastocyst stage, epigenetic differ-

ences are sufficiently obvious between these two lineages to be

detected by immunofluorescence [61]: while the outer tro-

phectoderm cells have low levels of DNA methylation, the

inner cell mass (ICM) that gives rise to the embryo proper

has already undergone some re-establishment of methylation

(figure 1). Among those sequences that become methylated in

the epiblast, and in this case also silenced, is the Elf5 gene [88],

which is a key determinant of the trophectoderm lineage. In



that there is still much work that needs to be done. In particu-

lar, none of the possible DNA demethylating proteins have

actually demonstrated enhancement of reprogramming in

systems that could be applied to a biotechnological or clinical

setting. Moreover, the level of imprecise DNA demethylation

imparted by protein overexpression has yet to be quantified,

and could have serious implications for the ability of iPSCs to

function properly following subsequent differentiation.
)17.9(o
5. DNA methylation: a vital regulator of the
mammalian life cycle?

Mammalian embryonic development is an incredibly com-

plex undertaking that requires an extensive capacity for

plasticity to allow for the drastic changes in cell fate and

developmental potential. In this review, we have highlighted

the alternating phases of DNA methylation erasure and re-

establishment during mammalian development that reflect

these developmental changes (figure 1). It is widely accepted

that epigenetic reprogramming in mammalian development

is required for resetting imprints for the next generation;

however, one of the most intriguing and relevant questions

that remains unanswered is whether the reprogramming of

DNA methylation outside imprinted genes also plays a

crucial role in mammalian development.

This question is difficult to address, as a comprehensive

understanding of the mechanisms involved remains to be

achieved; emerging evidence indicates that this picture is

additionally complicated by functional redundancy. Neverthe-

less, knockout studies have yielded some insight. In PGCs,

depletion ofAid impairs globalmethylation erasure but—nota-

bly—does not restrict fertility [7]. The presence of alternative

demethylation pathways may prevent a more significant

impact on methylation levels, particularly at the crucial

imprinted regions, which could explain the viability of the

resultant germ cells. The demethylation of the paternal pronu-

cleus in the zygotewas linked to developmental viabilitywhen

it was shown that blocking the oxidative demethylation path-

way by genetic inactivation of TET3 causes partial embryonic

lethality [9].A lackof demethylation at theNanog andOct4pro-
moters and subsequent impaired activation in the early

embryomay have contributed to this phenotype. It outsin4.3(els
 )-183.pols-



to recent evidence suggesting that genes involved in the

piRNA pathway become transcriptionally activated in PGCs

upon promoter demethylation [119]. It is thought that this

may provide an elegant sensory mechanism that couples

global methylation erasure, activation of the piRNAmachinery

and repeat silencing.

The re-establishment of pluripotency is a feature strongly

associated with epigenetic reprogramming, which includes

demethylation of promoters of pluripotency factors and

their transcriptional activation. Indeed, pluripotency markers

are expressed in the early embryo and in PGCs (see above).

However, the causal relationship between the two is unclear.

Is it DNA methylation erasure that activates the pluripotency
network or is the latter activated by other stimuli and then in

turn induces epigenetic reprogramming?

There are many exciting questions to be addressed in

epigenetic reprogramming and we are now only beginning

to understand the molecular mechanisms involved. This

understanding, the establishment of in vitro systems and

the rapid development of new technologies will hopefully

allow researchers to answer these key questions in the

near future.
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