$< RNA < < < w_{t} < w_{t} <$ Co f t f≤a 04 TOR RNAa 0 0 [•] a

E \uparrow SS 0 0 \uparrow \uparrow a Se \downarrow 0 a \downarrow OCT4, SO 2, KLF4, a \downarrow ML C (OSKM) \uparrow 0 a SSO a \downarrow s \uparrow \downarrow 0 \uparrow SASP. \downarrow \downarrow 0 \uparrow \downarrow 0 \uparrow 0 \downarrow 0 \downarrow E $4 \le 0$ o $t \le t$ a $s \in t$ o a $t \le 0$ CT4, SO 2, KLF4, a dM = C (OSKM) 4 o a $s \le 0$ a $t \le t$ t o -

: SASP; $\tilde{\frown}$; PSC; $\tilde{\frown}$ RNA; ; RNA; $\tilde{\frown}$] [K]

R F 20, 2017; O 18, 2017.

. , (OCT4, SOX2, KLF4, 🍝 MYC, 😁 D . • OSKM) • 6 ,►ES► a d a Т (G ► 1962; W► 1997) 🔸 🍋 🔒 Ĩ, Y, ,, , (T, , , , Y, ,, , 2006)

2015). A 🖡 🍝 b_ _ _ >> b > . (K . , ~ . 2010). T TERT ~ (Q -. 2014), [∼] **•** PSC (K L 2009; B, G 2010). K b 21^{CIP1} (B, S 2009; H 2009; K 2009; L 2009; M 2009; U 2009). H ► -... 5 b_ (SASP) (K 🔺 🎜 SASP (Colo______. 2010). In _____ 2014), ج (B، ۲۰۰، 2016), م G . . . b_ . . ą OŠĶMĚ a AĚĚ - b b b b ...

₨ ₊∽

a į OSKM Ε H₂ (OSKM) IMR90 (F 1A,B) (B 2009). S RAS^{G12V}, b 0SKM (CDK) (CDK) (CDKI) b 15^{INK4}, b 16^{INK4}, b 21^{CIP1}, (F . 1C). T OSKM- $\tilde{}$ (RNA-). G $\tilde{}$ (SASP, $\tilde{}$ SASP, $\tilde{}$ (OSKM- $\tilde{}$). G $\tilde{}$ SASP. S - RAS- -Š. Š. • ř. - (Sab -► F . S1B), RAS - OSKM (S \sim \sim = 0.33) (F . 1F). A \sim = 0.33 (F . 1F). A $= (F . 1G; S_{2}) \rightarrow F . S1C),$ (GO) $= F . S1C \rightarrow F$ د ا . . ا ما . م ح ح , **b** GO OSKM , RAS b . . ► (F. 11; Set ► ► ► F. S1E). O b_ ... OSKM b

a 3 35223 -118a -2 a 12 12 a

S 4-& RNA o os RNAs ett s

 $[A] S \rightarrow [MR90] \rightarrow [A] S \rightarrow [A]$ 4 1. H. . . OSKM F ►. . . (A) S ► - . . <u>ب</u> اج ا ►IMR90. • $\begin{array}{c} \tilde{} = 18 \cdot b_{2} & () \cdot B_{3} , 100 \quad \text{M1} , 100 \quad \text{M2} , \\ (***) \quad P < 0.001. \quad (C) \quad Q \quad \tilde{} \quad RT - PCR \quad (\quad RT - PCR) \\ (\quad RT - PCR \quad \tilde{} \quad CDKN1 \quad Ab(\quad 21^{CIP1}) \quad \tilde{} \quad \tilde$ ř. b 15^{INK4}), CDKN2Ab (16^{INK4}) , CDKN1Ab (21^{CIP1}) , (GSEA). IMR90 (NES)N (E) H ■ IMR90 → (GSEA). b_ . -IMR90 👝 🛼 ► Z-, بر وار حر . . RAS . . OSKM 🛌 . (G) V → >1). . D OSKM- 🔎 RAS- 🍝 (I). F N Ĩ, Ă - . S. ĩ. , (P < 0.05) , ,

Sob F S2A. A. RNA (, RNAb , 3153. RNA) , (F . 2A). S , RNA OSKM-b (37, 0) (F. 2B,C). A RNA (CDKN1A, MTOR, MYOT, UBE2E1) (F. 2D; Solo F, S2D).

F 4 2. AT RNA TINR90. A STATE STATE STATE AND A STATE STATE

T OSKM NW RNA S3A-C). MYOT b RNA $(S_{2}b_{2} + F)$ $(S_{3}b_{2} + F)$ $(S_{3}$

Añ b. . a a , RNA-6 a, a b. . . . , , 2017). مع وا وا ► (T, ►, , ► R , b_ ... - RNA- 5 , RNA 🛏 a a ► .

T RNA $(F \cdot 3A)$. T RNA R-E, $(F \cdot 3A)$. T RNA R-E, $(F \cdot 3A)$. T RNA R-E, $(F \cdot 3A)$. T RNA $(F \cdot 3C)$, $(F \cdot 3E)$ RNA $(F \cdot 3E)$ RNA

N b RNA. IMR90 OSKM b RNA (F 3E). C -F RNA (RNA (RNA) -F MTOR - CDKN1A - MYOT-UBE2E1, b -). T RNA. (F , CDKN1A, b 53 \sim OSKM- b_2 53 \sim W \sim MYOT b ... 5, . b_ ĩ , RNA, F ----- ,____ · · · · · 6 b____ 🍝 (F. . 3G; Sb) 🔺 - F . S4C). T RNA 🍝 . W (> . ► .06 19.6720T 19.7353.6() -- -

F43. C b6. RNA;6. RNA;6. 6. RNA;6. 6. RNA;RNA;6. RNA;6. RNA;6. RNA;6. RNA;(B) T6. RNAb;6. RNAb;6. RNAb;6. RNAb;(B) T6. RNAb;6. RNAb;6. RNAb;6. RNAb;(B) T6. RNAb;6. RNAb;6. RNAb;(B) T6. RNAb;6. RNAb;6. RNAb;(C) RNAb;(C) RNAb;(C) RNAb;(C) RNAb;(C) RNAb;(C) RNAb;(C) RNAb;(C) RNAb;(C) RNAb;

TGF-β- ί	а	21 ^{CIP1}	Ĺ		Ĺ	OSKM-	RAS-	OSKM-
T RAS-	, 	MTOR	W	MT MTC	$\frac{1}{2}$	SKM-	-	ا(

Ň	OSKM- 🍝	, L , L	,	Ĩ.,	
RAS-	÷ , ÷,	🍝 👝 , (F	. 5A). T	, a, 1	÷, -
-	12	, ,,(H ,,	, ,	. 2015). I ~	,

CDKI b_{2} OSKM RAS b_{2} b_{3} OSKM RAS b_{4} $(F \cdot 5C)$. A b_{2} b_{3} $(F \cdot 5C)$. A b_{3} b_{4} $(F \cdot 5D)$ b_{4} $(F \cdot 5D)$ $(F \cdot$

S6B). W CDKN1A, CDKN2A, CDKN2B OSKM (F . 4E, 5C), CDKN2B RNA OSKM (F . 5E; Sb) F . S6C; - . CDKN1A Aats¶t a.

RAS

S7F)

$$\begin{array}{c} F = 6, \ D = \dots, \ TOR = \sum_{i=1}^{n} (A_i B_{i_i}, \dots, \sum_{i=1}^{n} ($$

Α د ه h M (Q 2014; S, . 2014; Y 2009). Db 6

CIP1 21MTOR b MYOT 🔉 UBE2E1 MYOT Ĕ. b . 2005). Db MYOT – (O . RNA 3 ► RNA , b ► IMR90 ► UBE2E1 -. MYOT 2

J ► E2	Ĩ.	, ř	- (N	199 🛌	6).
P a	- b_ ~	L.		Ĩ. Ĩ	-
	. ►	, b , b	μ 👗 (D	. 👗 -S 🛛	
(2013 جر	. W	UBE2E		<u>م</u> ار –	
	~ ~ ~	. G 🏼		► b 21 ^{CIPI}	-
b	• , •	b	•••	. .	~

F. RE-, RNA, 97-RNA, PCR-, b, s. RE-X, RE-E O, F. SI.

RNA a a

L a a a RNA G = DNA, 10^6 (Q = 1), $(3 = 10^6)$, $(5 = 10^6)$, (10^6) , (10

1925).

Рa

R+++ &s

- B, $DJ, C \rightarrow BG, D = M, W = ME, S \rightarrow CJ, Z \rightarrow J,$

 $P \implies S, F = OR, B = AK, W = G, S = S, S, S = R.2014, F = RNA; S = 2. Na P 9: 171-181.$

Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence

Marieke Aarts, Athena Georgilis, Meryam Beniazza, et al.

Genes Dev. published online November 14, 2017 Access the most recent version at doi:10.1101/gad.297796.117

Supplemental Material	http://genesdev.cshlp.org/content/suppl/2017/11/14/gad.297796.117.DC1
	Published online November 14, 2017 in advance of the full issue.
Creative Commons License	This article, published in <i>Genes & Development</i> , is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/ .
Email Alerting Service	Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.