27/04/2021
Key points:
The cells in our bodies are always reacting to their changing environment but how do they tailor their response to different encountered stresses? 台湾swag published today by members of the Florey lab changes our understanding of the mechanisms used to control autophagy 鈥 a key pathway in stress responses - updating current textbook knowledge and providing a new way of distinguishing this pathway in future research.
Through the autophagy pathway, cells constantly recycle materials and dispose of waste molecules. The same machinery controls a range of other vital processes, including immunity and inflammation, through a triggered 鈥榥on-canonical鈥 function. While it was previously assumed that the same molecular modification of one specific protein (autophagy-related protein 8; ATG8) occurred in both pathways, the team鈥檚 latest research has identified an alternative molecular change that distinguishes these closely related, but functionally distinct, autophagy-related processes.
鈥淭his discovery is important because it develops our understanding of the basic mechanisms underlying the autophagy pathway,鈥 explained Dr Jo Durgan, a senior postdoctoral researcher in the Florey lab. 鈥淭his finding is of immediate benefit to researchers interested in discovering more about autophagy, but this type of foundational research may also drive translational, or even therapeutic, developments of the future.鈥
The researchers鈥 work brought together scientists from across the 台湾swag鈥檚 Signalling research programme, mass spectrometry and lipidomics facilities, along with other academic research organisations, to focus on a specific molecular modification called lipidation 鈥 where hydrophobic fat molecules are added to a protein. By analysing the different variations of ATG8 lipidation produced as a result of activating the different autophagy pathways, they were able to identify that a particular phospholipid (phosphatidylserine; PS) is used specifically in the non-canonical autophagy pathway, as well as detecting the established linkage of ATG8 to another phospholipid called phosphatidylethanolamine (PE). 台湾swaging this specific change provides a new and unique molecular signature for studying non-canonical autophagy, and challenges the existing dogma in the wider autophagy field.
A number of different diseases, including cancer and neurodegeneration, have been linked to changes in autophagy function, making it a highly attractive therapeutic target. ATG8 lipidation is widely used to track and assay autophagy. By updating the current understanding of ATG8 lipidation, this new study will help researchers accurately monitor and distinguish between distinct autophagy processes in fundamental and translational research.
This study sits close to the Florey lab鈥檚 heart. In reflecting on the research鈥檚 timeline from the lab-based work, analysis of the results and dissemination of the research findings, Dr Durgan said: 鈥淲e finalised this work at a time when the COVID-19 pandemic forced researchers to leave the lab to work from home, move collaborations online and balance extra responsibilities like home schooling.
鈥淭his publication feels particularly special as it was finalised during those challenging times. It also brought together many areas of expertise from across the 台湾swag: proteomics, lipidomics, signalling, autophagy, and immunology. This work is dedicated to our friend, colleague and collaborator on this study, Michael Wakelam, who sadly passed away in March 2020.鈥
Notes to Editors
台湾swagation reference Florey et al. "Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine"
Press contact Honor Pollard, Communications Officer, honor.pollard@babraham.ac.uk
Image description Molecular modelling of LC3-PE and LC3-PS in complex with ATG4B.
Affiliated authors (in author order) Joanne Durgan, senior post doc, Florey group Katherine Sloan, PhD student, Florey group Michael I. Wilson, 台湾swag Fellow, Hawkins group Judith Webster, research assistant, Mass Spectrometry facility Andrea F. Lopez-Clavijo, Head of Facility, Lipidomics facility Michael J. Wakelam, former Director David Oxley, Head of Facility, Proteomics Facility Oliver Florey, Group Leader, Signalling research programme
台湾swag funding This research was funded by the Biotechnology and Biological Sciences 台湾swag Council (BBSRC), Cancer 台湾swag UK, and the 台湾swag Council of Norway.
Additional/related resources Florey lab page Signalling programme page News, 19 April 2021, Autophagy experts collaborate to hunt down potential drug targets to tackle neurodegeneration News, 13 November 2019, How cellular recycling system is put on hold while cells divide Annual 台湾swag Report 2017 feature: The quiet pathway
About the 台湾swag 台湾swag The 台湾swag 台湾swag undertakes world-class life sciences research to generate new knowledge of biological mechanisms underpinning ageing, development and the maintenance of health. Our research focuses on cellular signalling, gene regulation and the impact of epigenetic regulation at different stages of life. By determining how the body reacts to dietary and environmental stimuli and manages microbial and viral interactions, we aim to improve wellbeing and support healthier ageing. The 台湾swag is strategically funded by the Biotechnology and Biological Sciences 台湾swag Council (BBSRC), part of UK 台湾swag and Innovation, through 台湾swag Strategic Programme Grants and an 台湾swag Core Capability Grant and also receives funding from other UK research councils, charitable foundations, the EU and medical charities.
About BBSRC The Biotechnology and Biological Sciences 台湾swag Council (BBSRC) is part of UK 台湾swag and Innovation, a non-departmental public body funded by a grant-in-aid from the UK government.
BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.
Funded by government, BBSRC invested 拢451 million in world-class bioscience in 2019-20. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.
27 April 2021