台湾swag

Stephens Group

Stephens Group
Stephens Group
Len Stephens
Group Leader
Stephens Group

台湾swag Summary

The programmes of work in the laboratory are currently aimed at understanding the molecular mechanisms and physiological significance of intracellular signalling networks which involve a family of enzymes called phosphoinositide 3OH-kinases (PI3Ks).

PI3Ks are now accepted to be critical regulators of numerous important and complex cell responses, including cell growth, division, survival and movement.

PI3Ks catalyse the formation of one or more critical phospholipid messenger molecules, which signal information by binding to specific domains in target proteins. Currently the best understood pathway involves the activation of Class I PI3Ks by cell surface receptors.

In recent years, the laboratory has increasingly focused on the role of PI3Ks in the signalling mechanisms which allow receptors on neutrophils (white blood cells) to control various aspects of neutrophil function.

Neutrophils are key players in the front line of our immune system, responsible primarily for the recognition and destruction of bacterial and fungal pathogens. However, they are also involved in the amplification cascades that underlie various inflammatory pathologies, e.g. Acute Respiratory Distress Syndrome (ARDS) and rheumatoid arthritis.

Latest 台湾swagations

Open Access
Collins DM, Janardan V, Barneda D, Anderson KE, Niewczas I, Taylor D, Qiu D, Jessen HJ, Lopez-Clavijo AF, Walker S, Raghu P, Clark J, Stephens LR, Hawkins PT Signalling , Imaging , Lipidomics , Biological Chemistry

CDS enzymes (CDS1 and 2 in mammals) convert phosphatidic acid (PA) to CDP-DG, an essential intermediate in the de novo synthesis of PI. Genetic deletion of CDS2 in primary mouse macrophages resulted in only modest changes in the steady-state levels of major phospholipid species, including PI, but substantial increases in several species of PA, CDP-DG, DG and TG. Stable isotope labelling experiments employing both 13C6- and 13C6D7-glucose revealed loss of CDS2 resulted in a minimal reduction in the rate of de novo PI synthesis but a substantial increase in the rate of de novo PA synthesis from G3P, derived from DHAP via glycolysis. This increased synthesis of PA provides a potential explanation for normal basal PI synthesis in the face of reduced CDS capacity (via increased provision of substrate to CDS1) and increased synthesis of DG and TG (via increased provision of substrate to LIPINs). However, under conditions of sustained GPCR-stimulation of PLC, CDS2-deficient macrophages were unable to maintain enhanced rates of PI synthesis via the 'PI cycle', leading to a substantial loss of PI. CDS2-deficient macrophages also exhibited significant defects in calcium homeostasis which were unrelated to the activation of PLC and thus probably an indirect effect of increased basal PA. These experiments reveal that an important homeostatic response in mammalian cells to a reduction in CDS capacity is increased de novo synthesis of PA, likely related to maintaining normal levels of PI, and provides a new interpretation of previous work describing pleiotropic effects of CDS2 deletion on lipid metabolism/signalling.

+view abstract The Biochemical journal, PMID: 39312194

Open Access
Chan V, Camardi C, Zhang K, Orofiamma LA, Anderson KE, Hoque J, Bone LN, Awadeh Y, Lee DKC, Fu NJ, Chow JTS, Salmena L, Stephens LR, Hawkins PT, Antonescu CN, Botelho RJ Signalling

Receptor tyrosine kinases such as epidermal growth factor receptor (EGFR) stimulate phosphoinositide 3-kinases (PI3Ks) to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P]. PtdIns(3,4,5)P then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3尾. Consequently, unchecked upregulation of PtdIns(3,4,5)P-Akt signalling promotes tumour progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at -1 and -2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P in response to EGF signalling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signalling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signalling.

+view abstract Molecular biology of the cell, PMID: 39024272

Open Access
Chessa TAM, Jung P, Anwar A, Suire S, Anderson KE, Barneda D, Kielkowska A, Sadiq BA, Lai IW, Felisbino S, Turnham DJ, Pearson HB, Phillips WA, Sasaki J, Sasaki T, Oxley D, Spensberger D, Segonds-Pichon A, Wilson M, Walker S, Okkenhaug H, Cosulich S, Hawkins PT, Stephens LR Signalling , Imaging , Mass Spectrometry , Bioinformatics , Gene Targeting

The PIP/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP/PI(3,4)P phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP/PI(3,4)P-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of YXXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP signaling, and supports tumor progression.

+view abstract Molecular cell, PMID: 37567175

Group Members

Len Stephens

Group Leader

Karen Anderson

Senior 台湾swag Associate

Arqum Anwar

Visiting Scientist

Tamara Chessa

Postdoc 台湾swag Scientist

Piotr Kobialka

Visiting Student

Andrea Lopez

Visiting Scientist

Clement Pambrun

Visiting Student

Sarah Perrenot

Visiting Student

Lia Spigel-Emmerich

Visiting Student

Jemeen Sreedharan

Visiting Scientist

Marion Trebosc

Visiting Scientist

Anna Wulf

Visiting Student