Simon Andrews did his first degree in Microbiology at the University of Warwick. After a brief period working for Sandoz pharmaceuticals he went on to do a PhD in protein engineering a the University of Newcastle with Harry Gilbert. During his PhD his interests moved from bench work toward the emerging field of bioinformatics, and he decided to follow this direction in his future career.
After completing his PhD Simon worked with the BBSRC IT Services where he developed and then presented a series of bioinformatics training courses in protein structure analysis to the BBSRC institutes. At one of these courses at ̨Íåswag he met John Coadwell who establised the ̨Íåswag Bioinformatics group and was then employed as the second member of the bioinformatics team. Since joining ̨Íåswag Simon has seen the group grow from two people to nine as the field has become far more prominent in the biological research community. He took over the running of the group in 2010.
Whole genome bisulfite sequencing (WGBS) has been the gold standard technique for base resolution analysis of DNA methylation for the last 15Â years. It has been, however, associated with technical biases, which lead to overall overestimation of global and regional methylation values, and significant artifacts in extreme cytosine-rich DNA sequence contexts. Enzymatic conversion of cytosine is the newest approach, set to replace entirely the use of the damaging bisulfite conversion of DNA. The EM-seq technique utilizes TET2, T4-BGT, and APOBEC in a two-step conversion process, where the modified cytosines are first protected by oxidation and glucosylation, followed by deamination of all unmodified cytosines to uracil. As a result, EM-seq is degradation-free and bias-free, requires low DNA input, and produces high library yields with longer reads, little batch variation, less duplication, uniform genomic coverage, accurate methylation over a larger number of captured CpGs, and no sequence-specific artifacts.
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3 regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared TÂ cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.